论文标题
在梳状结构上的随机重置
Stochastic resetting on comb-like structures
论文作者
论文摘要
我们研究在随机重置下的三维梳子上的扩散过程。我们考虑三种不同类型的重置:从梳子中的任意点到初始位置的全局重置,从手指重置为相应的骨干,从次级手指重置为主手指。由于不同的重置机制,在所有三种情况下沿主链的瞬态动力学都不同,因此为平方平方位移找到了广泛的动力学。对于本文研究的特定几何形状,我们计算固定溶液和均方根位移,并发现全局重置破坏了三个方向的传输。关于重置骨架,传输在两个方向上被损坏,但在主轴中得到了增强。最后,重置在手指上的重置增强了主链和主手指的传输,但对于次级手指中的平方平方位移具有稳定的价值。
We study a diffusion process on a three-dimensional comb under stochastic resetting. We consider three different types of resetting: global resetting from any point in the comb to the initial position, resetting from a finger to the corresponding backbone and resetting from secondary fingers to the main fingers. The transient dynamics along the backbone in all three cases is different due to the different resetting mechanisms, finding a wide range of dynamics for the mean squared displacement. For the particular geometry studied herein, we compute the stationary solution and the mean square displacement and find that the global resetting breaks the transport in the three directions. Regarding the resetting to the backbone, the transport is broken in two directions but it is enhanced in the main axis. Finally, the resetting to the fingers enhances the transport in the backbone and the main fingers but reaches a steady value for the mean squared displacement in the secondary fingers.