论文标题

连接点:多元时间序列预测与图神经网络

Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks

论文作者

Wu, Zonghan, Pan, Shirui, Long, Guodong, Jiang, Jing, Chang, Xiaojun, Zhang, Chengqi

论文摘要

长期以来,建模多元时间序列一直吸引了来自各种领域的研究人员,包括经济学,金融和交通。多元时间序列预测背后的一个基本假设是,它的变量相互取决于彼此,但是,在仔细观察时,可以说现有方法无法完全利用变量对之间的潜在空间依赖性。近年来,与此同时,图神经网络(GNN)在处理关系依赖性方面表现出很高的能力。 GNN需要明确定义的图形结构进行信息传播,这意味着它们不能直接应用于多元时间序列,在这种多元时间序列中,依赖关系未提前知道。在本文中,我们提出了专门为多元时间序列数据设计的一般图形神经网络框架。我们的方法会自动通过图形学习模块在变量之间提取单向关系,从而可以轻松地集成到外部知识之类的变量属性。进一步提出了一个新型的混合跳跃传播层和扩张的发射层,以捕获时间序列中的空间和时间依赖性。图形学习,图形卷积和时间卷积模块是在端到端框架中共同学习的。实验结果表明,我们提出的模型优于4个基准数据集中的3种的最新基线方法,并在两个流量数据集上使用其他方法来实现PAR性能,这些数据集提供了额外的结构信息。

Modeling multivariate time series has long been a subject that has attracted researchers from a diverse range of fields including economics, finance, and traffic. A basic assumption behind multivariate time series forecasting is that its variables depend on one another but, upon looking closely, it is fair to say that existing methods fail to fully exploit latent spatial dependencies between pairs of variables. In recent years, meanwhile, graph neural networks (GNNs) have shown high capability in handling relational dependencies. GNNs require well-defined graph structures for information propagation which means they cannot be applied directly for multivariate time series where the dependencies are not known in advance. In this paper, we propose a general graph neural network framework designed specifically for multivariate time series data. Our approach automatically extracts the uni-directed relations among variables through a graph learning module, into which external knowledge like variable attributes can be easily integrated. A novel mix-hop propagation layer and a dilated inception layer are further proposed to capture the spatial and temporal dependencies within the time series. The graph learning, graph convolution, and temporal convolution modules are jointly learned in an end-to-end framework. Experimental results show that our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets and achieves on-par performance with other approaches on two traffic datasets which provide extra structural information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源