论文标题
双线性Coifman-Meyer乘数的一些终点估计值
Some endpoint estimates for bilinear Coifman-Meyer multipliers
论文作者
论文摘要
在本文中,我们建立了作用在产品空间上的biinear coifman-meyer乘数的映射属性$ l^p(\ mathbb {r}^n)\ times \ times \ mathrm {bmo}(\ mathbb {r}^n)$,$ 1 <p <\ infty $。随着这些结果的应用,我们获得了一些相关的Kato-Ponce-type不平等,涉及端点空间$ \ MATHRM {BMO}(\ Mathbb {r}^n)$,我们还研究了功能的点产物,该功能是$ \ $ \ m mathrm {bmo}(bmo}(bmo}(bmo}(\ mathbb)) $ h^1(\ Mathbb {r}^n)$,$ h^1(\ Mathbb {r}^n)$和$ l^p(\ Mathbb {r}^n)$,$ 1 <p <\ infty $。
In this paper we establish mapping properties of bilinear Coifman-Meyer multipliers acting on the product spaces $H^1(\mathbb{R}^n)\times\mathrm{bmo}(\mathbb{R}^n)$ and $L^p(\mathbb{R}^n)\times\mathrm{bmo}(\mathbb{R}^n)$, with $1<p<\infty$. As application of these results, we obtain some related Kato-Ponce-type inequalities involving the endpoint space $\mathrm{bmo}(\mathbb{R}^n)$, and we also study the pointwise product of a function in $\mathrm{bmo}(\mathbb{R}^n)$ with functions in $H^1(\mathbb{R}^n)$, $h^1(\mathbb{R}^n)$ and $L^p(\mathbb{R}^n)$, with $1<p<\infty$.