论文标题

ATBRG:自适应目标行为关系图网络有效建议

ATBRG: Adaptive Target-Behavior Relational Graph Network for Effective Recommendation

论文作者

Feng, Yufei, Hu, Binbin, Lv, Fuyu, Liu, Qingwen, Zhang, Zhiqiang, Ou, Wenwu

论文摘要

推荐系统(RS)致力于预测用户对给定项目的偏好,并已广泛部署在大多数Web规模的应用程序中。最近,由于其丰富的结缔组织信息,知识图(KG)引起了RS的广泛关注。现有方法要么探索用于kg上用户项目对的独立元路径,要么在整个kg上使用图形神经网络(GNN),以分别为用户和项目产生表示形式。尽管有效,但前一种方法仍未完全捕获kg中隐含的结构信息,而后者则忽略了嵌入传播过程中目标用户和项目之间的相互效果。在这项工作中,我们提出了一个名为自适应目标行为关系图网络(简称ATBRG)的新框架,以有效地捕获目标用户 - 项目对的结构关系。具体而言,要将给定的目标项目与KG上的用户行为相关联,我们建议图形连接和图形修剪技术来构建自适应目标行为关系图。为了完全从端到端的方式通过丰富关系连接的子图完全提炼结构信息,我们详细介绍了ATBRG的模型设计,配备了关系感知的提取器层和表示激活层。我们对工业和基准数据集进行了广泛的实验。经验结果表明,ATBRG始终如一,显着优于最先进的方法。此外,在TAOBAO APP的一个受欢迎的建议方案中,成功部署成功部署后,ATBRG还取得了5.1%的CTR指标提高。

Recommender system (RS) devotes to predicting user preference to a given item and has been widely deployed in most web-scale applications. Recently, knowledge graph (KG) attracts much attention in RS due to its abundant connective information. Existing methods either explore independent meta-paths for user-item pairs over KG, or employ graph neural network (GNN) on whole KG to produce representations for users and items separately. Despite effectiveness, the former type of methods fails to fully capture structural information implied in KG, while the latter ignores the mutual effect between target user and item during the embedding propagation. In this work, we propose a new framework named Adaptive Target-Behavior Relational Graph network (ATBRG for short) to effectively capture structural relations of target user-item pairs over KG. Specifically, to associate the given target item with user behaviors over KG, we propose the graph connect and graph prune techniques to construct adaptive target-behavior relational graph. To fully distill structural information from the sub-graph connected by rich relations in an end-to-end fashion, we elaborate on the model design of ATBRG, equipped with relation-aware extractor layer and representation activation layer. We perform extensive experiments on both industrial and benchmark datasets. Empirical results show that ATBRG consistently and significantly outperforms state-of-the-art methods. Moreover, ATBRG has also achieved a performance improvement of 5.1% on CTR metric after successful deployment in one popular recommendation scenario of Taobao APP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源