论文标题
使用LSTM网络对不规则采样或缺少有价值的时间序列数据的无监督在线异常检测
Unsupervised Online Anomaly Detection On Irregularly Sampled Or Missing Valued Time-Series Data Using LSTM Networks
论文作者
论文摘要
我们研究异常检测并引入了一种处理可变长度,不规则采样序列或缺少值的序列的算法。但是,当整个论文中所述的异常标签存在时,我们的算法完全不受监督,可以很容易地扩展到监督或半监视的情况。我们的方法使用长期内存(LSTM)网络,以提取时间特征并找到用于异常检测的最相关的特征向量。我们通过使用时间调制门调节标准LSTM模型将采样时间信息纳入了我们的模型。从LSTM获得最相关的功能后,我们使用支持向量数据描述符(SVDD)模型标记序列。我们引入损失函数,然后以端到端的方式共同优化特征提取和序列处理机制。通过这种联合优化,LSTM提取了以后在SVDD中使用的异常检测的最相关功能,因此完全消除了通过专家知识选择功能选择的需求。此外,我们为在线设置提供了一种培训算法,在新数据到达时,我们使用单个序列优化了模型参数。最后,在现实生活中,我们表明,由于LSTM与SVDD和关节优化的结合,我们的模型大大优于标准方法。
We study anomaly detection and introduce an algorithm that processes variable length, irregularly sampled sequences or sequences with missing values. Our algorithm is fully unsupervised, however, can be readily extended to supervised or semisupervised cases when the anomaly labels are present as remarked throughout the paper. Our approach uses the Long Short Term Memory (LSTM) networks in order to extract temporal features and find the most relevant feature vectors for anomaly detection. We incorporate the sampling time information to our model by modulating the standard LSTM model with time modulation gates. After obtaining the most relevant features from the LSTM, we label the sequences using a Support Vector Data Descriptor (SVDD) model. We introduce a loss function and then jointly optimize the feature extraction and sequence processing mechanisms in an end-to-end manner. Through this joint optimization, the LSTM extracts the most relevant features for anomaly detection later to be used in the SVDD, hence completely removes the need for feature selection by expert knowledge. Furthermore, we provide a training algorithm for the online setup, where we optimize our model parameters with individual sequences as the new data arrives. Finally, on real-life datasets, we show that our model significantly outperforms the standard approaches thanks to its combination of LSTM with SVDD and joint optimization.