论文标题

使用机器学习技术在微体系结构级别进行恶意软件检测

Malware Detection at the Microarchitecture Level using Machine Learning Techniques

论文作者

Kwan, Abigail

论文摘要

最近出现了在处理器微体系结构级别的恶意软件网络攻击的检测,作为增强计算机系统安全性的有前途解决方案。安全机制,例如基于硬件的恶意软件检测,使用机器学习算法在借助硬件性能计数器(HPC)信息进行分类和检测恶意软件。 ML分类器是从硬件性能计数器(HPC)中提取的微构造数据,该数据包含有关软件程序的行为数据。这些HPC在运行时被捕获以建模程序的行为。由于每个处理器的HPC量受到限制,因此许多技术采用功能降低来减少HPC的量,从而将其降低到最重要的属性。先前的研究已经使用二进制分类来实施其恶意软件检测,并在大量降低功能降低后。这导致简单地识别软件或良性的软件。这项研究通过将不同的机器学习算法的精度与二进制和多类分类模型进行比较,全面分析了基于硬件的恶意软件探测器。我们的实验结果表明,与复杂的机器学习模型(例如神经网络和逻辑)相比,轻巧的J48和JRIP算法在检测恶意模式方面的表现更好,即使引入了多种类型的恶意软件。尽管它们的检测准确性略有降低,但它们的稳健性(曲线下的区域)仍然足够高,以至于它们提供了合理的假阳性率。

Detection of malware cyber-attacks at the processor microarchitecture level has recently emerged as a promising solution to enhance the security of computer systems. Security mechanisms, such as hardware-based malware detection, use machine learning algorithms to classify and detect malware with the aid of Hardware Performance Counters (HPCs) information. The ML classifiers are fed microarchitectural data extracted from Hardware Performance Counters (HPCs), which contain behavioral data about a software program. These HPCs are captured at run-time to model the program's behavior. Since the amount of HPCs are limited per processor, many techniques employ feature reduction to reduce the amount of HPCs down to the most essential attributes. Previous studies have already used binary classification to implement their malware detection after doing extensive feature reduction. This results in a simple identification of software being either malware or benign. This research comprehensively analyzes different hardware-based malware detectors by comparing different machine learning algorithms' accuracy with binary and multi-class classification models. Our experimental results indicate that when compared to complex machine learning models (e. g. Neural Network and Logistic), light-weight J48 and JRip algorithms perform better in detecting the malicious patterns even with the introduction of multiple types of malware. Although their detection accuracy slightly lowers, their robustness (Area Under the Curve) is still high enough that they deliver a reasonable false positive rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源