论文标题

有效的熵辅助助攻检测系统,具有基于MM-SART数据库的EEG信号

An Effective Entropy-assisted Mind-wandering Detection System with EEG Signals based on MM-SART Database

论文作者

Chen, Yi-Ta, Lee, Hsing-Hao, Shih, Ching-Yen, Chen, Zih-Ling, Beh, Win-Ken, Yeh, Su-Ling, Wu, An-Yeu

论文摘要

通常被定义为关注度的流失的思维(MW)发生在20%-40%的时间之间,对我们的日常生活产生负面影响。因此,检测何时发生MW可以阻止我们无法通过MW产生的负面结果,例如在学习过程中未能跟踪。在这项工作中,我们首先收集用于检测MW的响应任务(MM-SART)数据库的多模式持续关注。我们的实验收集了82名参与者的数据。对于每个参与者,我们收集了32通道脑电图(EEG)信号,光摄影学信号(PPG)信号,电流皮肤响应(GSR)信号(GSR)信号,眼球跟踪信号和几个问卷的量度。然后,我们根据收集的EEG信号提出了一个有效的MW检测系统。为了探索EEG信号的非线性特征,我们在时间,频率和小波域中利用基于熵的特征。实验结果表明,通过使用随机森林(RF)分类器,我们可以通过剩下的对象进行交叉验证来达到0.712 AUC得分。此外,为了降低MW检测系统的整体计算复杂性,我们应用了通道选择和特征选择的技术。通过仅使用两个最重要的脑电图通道,我们可以将分类器的训练时间减少44.16%。通过在功能集上执行相关性重要性消除(CIFE),我们可以将AUC得分进一步提高到0.725,但与递归功能消除(RFE)方法相比,选择时间的14.6%。通过提出MW检测引擎,可以将当前的工作应用于教育场景,尤其是在当今远程学习的时代。

Mind-wandering (MW), which usually defined as a lapse of attention, occurs between 20%-40% of the time, has negative effects on our daily life. Therefore, detecting when MW occurs can prevent us from those negative outcomes resulting from MW, such as failing to keep track of course during learning. In this work, we first collect a multi-modal Sustained Attention to Response Task (MM-SART) database for detecting MW. Eighty-two participants' data are collected in our experiments. For each participant, we collect measures of 32-channels electroencephalogram (EEG) signals, photoplethysmography (PPG) signals, galvanic skin response (GSR) signals, eye tracker signals, and several questionnaires for detailed analyses. Then, we propose an effective MW detection system based on the collected EEG signals. To explore the non-linear characteristics of EEG signals, we utilize the entropy-based features in time, frequency, and wavelet domains. The experimental results show that we can reach 0.712 AUC score by using the random forest (RF) classifier with the leave-one-subject-out cross-validation. Moreover, to lower the overall computational complexity of the MW detection system, we apply techniques of channel selection and feature selection. By using the only two most significant EEG channels, we can reduce the training time of the classifier by 44.16%. By performing correlation importance feature elimination (CIFE) on the feature set, we can further improve the AUC score to 0.725 but with only 14.6% of the selection time compared with the recursive feature elimination (RFE) method. By proposing the MW detection engine, current work can be applied to educational scenarios, especially in the era of remote learning nowadays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源