论文标题
在$ p $ - 可见的班级数字中,一个虚构的二次字段的家族$ \ mathbb {q}(\ sqrt {d})$和$ \ mathbb {q}(\ sqrt {d+1})
On the $p$-divisibility of class numbers of an infinite family of imaginary quadratic fields $\mathbb{Q} (\sqrt{d})$ and $\mathbb{Q} (\sqrt{d+1}).$
论文作者
论文摘要
对于任何奇怪的prime $ p,$,我们构建了一个无限的虚构二次二次字段$ \ mathbb {q}(\ sqrt {d}),\ mathbb {q}(\ sqrt {\ sqrt {d+1})的班级数字都可以$p。1$p。1$p。 $ p> 2. $
For any odd prime $p,$ we construct an infinite family of pairs of imaginary quadratic fields $\mathbb{Q}(\sqrt{d}),\mathbb{Q}(\sqrt{d+1})$ whose class numbers are both divisible by $p.$ One of our theorems settles Iizuka's conjecture for the case $n=1$ and $p >2.$