论文标题
从一体和两体密度的散射可观察物:形式主义和应用于$γ\,{}^3 $ He scatting
Scattering Observables from One- and Two-Body Densities: Formalism and Application to $γ\,{}^3$He Scattering
论文作者
论文摘要
我们介绍了过渡密度形式主义,这是一种计算外部探针与光核的相互作用的有效且通用的方法。一旦评估并存储了一个编码目标核结构的单体和两体过渡密度。然后将它们与相互作用的内核进行卷曲以产生幅度,从而可观察到。通过选择不同的内核,可以将相同的密度用于探针与靶标相互作用的任何反应。因此,该方法利用了这种过程中发生的核结构与相互作用内核之间的分解。我们详细研究了在$^3 $ HE上相关的矩阵元素的部分波数的收敛。结果与我们先前的手性有效场理论计算完全一致。但是,新方法在计算上明显更有效,这有助于在计算中包含更多的部分波通道。我们还讨论了过渡密度方法对其他核和反应的有用性。在$^4 $之类的较重目标上的弹性康普顿散射计算是本研究的直接扩展,因为使用了相同的相互作用核。形式主义的一般性意味着我们的$^3 $ HE密度可用于评估任何$^3 $ HE弹性散落的观察者,并通过一体和两体操作员的贡献。它们可在https://datapub.fz-juelich.de/anogga上找到。
We introduce the transition-density formalism, an efficient and general method for calculating the interaction of external probes with light nuclei. One- and two-body transition densities that encode the nuclear structure of the target are evaluated once and stored. They are then convoluted with an interaction kernel to produce amplitudes, and hence observables. By choosing different kernels, the same densities can be used for any reaction in which a probe interacts perturbatively with the target. The method therefore exploits the factorisation between nuclear structure and interaction kernel that occurs in such processes. We study in detail the convergence in the number of partial waves for matrix elements relevant in elastic Compton scattering on $^3$He. The results are fully consistent with our previous calculations in Chiral Effective Field Theory. But the new approach is markedly more computationally efficient, which facilitates the inclusion of more partial-wave channels in the calculation. We also discuss the usefulness of the transition-density method for other nuclei and reactions. Calculations of elastic Compton scattering on heavier targets like $^4$He are straightforward extensions of this study, since the same interaction kernels are used. And the generality of the formalism means that our $^3$He densities can be used to evaluate any $^3$He elastic-scattering observable with contributions from one- and two-body operators. They are available at https://datapub.fz-juelich.de/anogga.