论文标题
3D平面中任意自旋场的立方相互作用
Cubic interactions of arbitrary spin fields in 3d flat space
论文作者
论文摘要
考虑使用轻度尺度的公式,考虑了三维平坦空间中的大量任意自旋不可值得不可值得不可可值得的场和无质量的(标量和一半自旋)场。研究了整数旋转和半整数旋转场。对于此类领域,我们为立方相互作用提供分类,并为所有立方相互作用顶点获得明确的表达式。我们研究了两种形式的立方相互作用顶点,它们称为第一衍生形式和更高衍生的形式。所有立方相互作用顶点都是通过使用第一衍生形式来构建的。
Using light-cone gauge formulation, massive arbitrary spin irreducible fields and massless (scalar and one-half spin) fields in three-dimensional flat space are considered. Both the integer spin and half-integer spin fields are studied. For such fields, we provide classification for cubic interactions and obtain explicit expressions for all cubic interaction vertices. We study two forms of the cubic interaction vertices which we refer to as first-derivative form and higher-derivative form. All cubic interaction vertices are built by using the first-derivative form.