论文标题
学习一个加强的代理,以进行灵活的曝光括号选择
Learning a Reinforced Agent for Flexible Exposure Bracketing Selection
论文作者
论文摘要
自动选择曝光括号(图像不同的图像)对于通过使用多曝光融合获得高动态范围图像很重要。与以前具有许多限制的方法不同,例如需要相机响应功能,传感器噪声模型以及具有不同暴露的预览图像(在某些方案中无法使用,例如某些移动应用程序),我们提出了一个新颖的深神经网络,以自动选择“ ebastose”支架,命名为EBSNET,命名EBSNET,而没有上述限制。 EBSNET被配制为增强剂,通过通过多曝光融合网络(MEFNET)提供的最大化奖励来训练。通过仅从单个自动曝光预览图像中提取的照明和语义信息,EBSNet可以选择最佳的曝光括号以进行多曝光融合。可以共同培训EBSNet和Mefnet,以针对最近的最新方法产生有利的结果。为了促进未来的研究,我们提供了一个新的基准数据集用于多曝光选择和融合。
Automatically selecting exposure bracketing (images exposed differently) is important to obtain a high dynamic range image by using multi-exposure fusion. Unlike previous methods that have many restrictions such as requiring camera response function, sensor noise model, and a stream of preview images with different exposures (not accessible in some scenarios e.g. some mobile applications), we propose a novel deep neural network to automatically select exposure bracketing, named EBSNet, which is sufficiently flexible without having the above restrictions. EBSNet is formulated as a reinforced agent that is trained by maximizing rewards provided by a multi-exposure fusion network (MEFNet). By utilizing the illumination and semantic information extracted from just a single auto-exposure preview image, EBSNet can select an optimal exposure bracketing for multi-exposure fusion. EBSNet and MEFNet can be jointly trained to produce favorable results against recent state-of-the-art approaches. To facilitate future research, we provide a new benchmark dataset for multi-exposure selection and fusion.