论文标题
边缘通道之间的准粒子隧道的分数库仑封锁
Fractional Coulomb blockade for quasiparticle tunneling between edge channels
论文作者
论文摘要
我们研究了$ 1.4〜 \ MATHRM {μm} $ - 宽量子点在分数量子厅制度中的宽量子点。对于填充因子$ \ 2/3 $和$ \ gtrsim 1/3 $中的量子点,观察到的库仑共振显示了磁场中的定期调制。这表明量子点中2/3分数量子霍尔状态的非平凡重建。我们提出了系统的电荷稳定性图的模型,假设两个可压缩区域分别由不可压缩的填充因子划分的条纹$ 2/3 $和$ 1/3 $隔开。从磁场周期对总磁场的依赖性,我们在量子点中构建了零场电荷密度分布。两个可压缩区域之间的隧道表现出分数库仑封锁。对于两个填充因子区域,我们通过与填充因子2处的测量值进行比较,提取分数费用$ e^*/e = 0.32 \ pm 0.03 $。由于它们与量子Hall Fabry-pérot的干涉仪的密切关系,我们对分数量子室中的量子点进行了调查,并补充了量子量的量子,并补充了任何调查量子的量子。
We study the magneto-conductance of a $1.4~\mathrm{μm}$-wide quantum dot in the fractional quantum Hall regime. For a filling factor $\approx 2/3$ and $\gtrsim 1/3$ in the quantum dot the observed Coulomb resonances show a periodic modulation in magnetic field. This indicates a non-trivial reconstruction of the 2/3 fractional quantum Hall state in the quantum dot. We present a model for the charge stability diagram of the system assuming two compressible regions separated by an incompressible stripe of filling factor $2/3$ and $1/3$, respectively. From the dependence of the magnetic field period on total magnetic field we construct the zero-field charge density distribution in the quantum dot. The tunneling between the two compressible regions exhibits fractional Coulomb blockade. For both filling factor regions, we extract a fractional charge $e^*/e = 0.32 \pm 0.03$ by comparing to measurements at filling factor 2. With their close relation to quantum Hall Fabry-Pérot interferometers, our investigations on quantum dots in the fractional quantum Hall regime extend and complement interference experiments investigating the nature of anyonic fractional quantum Hall quasiparticles.