论文标题

嵌套区的数学:阿拉斯加的案例

Mathematics of Nested Districts: The Case of Alaska

论文作者

Caldera, Sophia, DeFord, Daryl, Duchin, Moon, Gutekunst, Samuel C., Nix, Cara

论文摘要

在八个州,“筑巢规则”要求每个州参议院区完全由两个相邻的州议会区组成。在本文中,我们研究了这些筑巢规则的潜在影响,重点是阿拉斯加,在阿拉斯加,共和党在参议院拥有2/3多数,而民主党领导的联盟控制着众议院。将当前的房屋计划视为固定的,并考虑所有可能的配对,我们发现仅配对的选择就可以在20个席位中与最近的投票模式相比,在20个席位中,这与使用Markov链程序生成无筑巢约束的计划时观察到的范围相似。该分析使其他有关阿拉斯加地区的见解,包括有或没有关于筑巢和连续性规则的分散者可用的党派纬度。

In eight states, a "nesting rule" requires that each state Senate district be exactly composed of two adjacent state House districts. In this paper we investigate the potential impacts of these nesting rules with a focus on Alaska, where Republicans have a 2/3 majority in the Senate while a Democratic-led coalition controls the House. Treating the current House plan as fixed and considering all possible pairings, we find that the choice of pairings alone can create a swing of 4-5 seats out of 20 against recent voting patterns, which is similar to the range observed when using a Markov chain procedure to generate plans without the nesting constraint. The analysis enables other insights into Alaska districting, including the partisan latitude available to districters with and without strong rules about nesting and contiguity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源