论文标题
在一般扩展的非法转化下的原始宇宙学扰动的转变
Transformation of Primordial Cosmological Perturbations Under the General Extended Disformal Transformation
论文作者
论文摘要
原始的宇宙学扰动是通过通货膨胀和随后的动力学过程培养的种子,最终导致了当前的宇宙。在这项工作中,我们研究了量规不变标量和张量扰动在一般扩展的异常转换下的行为 - \ tfrac {1} {2} ϕ^{;μ} ϕ _ {;μ},y \ equiv ϕ^{;μ} x _ {;μ},z \ equiv x^{;μ} dx _ {;μ} $,$ c $和$ d $是$(ϕ,x,y,z)$的一般功能。我们发现在这种转换下,张量扰动是不变的。另一方面,标量曲率扰动仅由于保形项而获得校正。它至少与线性顺序无关。在完整的Horndeski理论的框架内,校正术语结果依赖于规格不变的共扰动密度扰动及其首次衍生作用。在超级措施限制中,所有这些校正项都消失了,仅留下原始的标态曲率扰动。换句话说,在完整的Horndeski理论的背景下,它在超级措施极限的一般扩展变形转换下是不变的。我们的工作涵盖了有关原始宇宙学扰动的转化或不变性的一系列研究链,在我们的一般扩展的杂物转化下概括了它们的结果。
Primordial cosmological perturbations are the seeds that were cultivated by inflation and the succeeding dynamical processes, eventually leading to the current Universe. In this work, we investigate the behavior of the gauge-invariant scalar and tensor perturbations under the general extended disformal transformation, namely, $g_{μν} \rightarrow A(X,Y,Z)g_{μν} + Φ_μΦ_ν$, where $X \equiv -\tfrac{1}{2}ϕ^{;μ}ϕ_{;μ}, Y \equiv ϕ^{;μ}X_{;μ}, Z \equiv X^{;μ}X_{;μ} $ and $Φ_μ\equiv Cϕ_{;μ} + DX_{;μ}$, with $C$ and $D$ being a general functional of $(ϕ,X,Y,Z)$. We find that the tensor perturbation is invariant under this transformation. On the other hand, the scalar curvature perturbation receives a correction due the conformal term only; it is independent of the disformal term at least up to linear order. Within the framework of the full Horndeski theory, the correction terms turn out to depend linearly on the gauge-invariant comoving density perturbation and the first time-derivative thereof. In the superhorizon limit, all these correction terms vanish, leaving only the original scalar curvature perturbation. In other words, it is invariant under the general extended disformal transformation in the superhorizon limit, in the context of full Horndeski theory. Our work encompasses a chain of research studies on the transformation or invariance of the primordial cosmological perturbations, generalizing their results under our general extended disformal transformation.