论文标题
Riemannian流形的Wentzel-Laplace特征值的等级范围
Isoperimetric bounds for Wentzel-Laplace eigenvalues on Riemannian manifolds
论文作者
论文摘要
在本文中,我们在某些riemannian歧管中的有界域上研究了温格策 - 拉普拉斯操作员的特征值。根据Weyl的定律,我们通过根据域的等速比率给出的界限证明了渐近最佳的估计。我们的结果表明,等级比率允许在各种环境空间中控制Gentzel-Laplace运算符的整个光谱。
In this paper, we investigate eigenvalues of the Wentzel-Laplace operator on a bounded domain in some Riemannian manifold. We prove asymptotically optimal estimates, according to the Weyl's law through bounds that are given in terms of the isoperimetric ratio of the domain. Our results show that the isoperimetric ratio allows to control the entire spectrum of the Wentzel-Laplace operator in various ambient spaces.