论文标题

模式诱导的局部对称性破坏了活性物质系统

Pattern-induced local symmetry breaking in active matter systems

论文作者

Denk, Jonas, Frey, Erwin

论文摘要

宏观秩序和模式的出现是(自)推动剂系统的中心范式,也是许多生物系统结构的关键组成部分。订购过程与基本的显微镜相互作用之间的关系已经在实验和理论上进行了广泛的探索。虽然新兴模式通常显示出一种特定的对称性(例如,列巷模式或极化的行进羊群),但根据对称性与不同对称性的比对相互作用模式的对称性显然可以共存。实际上,最近使用Actomysin运动测定法的实验表明,肌动蛋白丝的极性和列表模式可以相互作用并动态转化。但是,对负责机制的理论理解仍然难以捉摸。在这里,我们提出了一种动力学方法,该方法辅以具有混合对准对称性的药物的流体动力学理论,该理论捕获了实验观察到的现象学,并为模式与不同对称性的模式的共存和相互作用提供了理论上的解释。我们表明,局部模式诱导的对称性破坏可以说明具有不同对称性的动态共存模式。具体而言,在比对相互作用中具有中等密度和弱极性偏置的状态中,列前带显示了其高密度核心区域内局部对称性的不稳定性,从而诱导沿频段的极波的形成。这些不稳定性最终导致了一个自组织的列神经带和极波的系统,这些系统彼此动态转变。我们的研究揭示了模式形成与局部对称性物质之间的相互反馈机制,这对生物系统中的结构形成产生了有趣的后果。

The emergence of macroscopic order and patterns is a central paradigm in systems of (self-)propelled agents, and a key component in the structuring of many biological systems.The relationships between the ordering process and the underlying microscopic interactions have been extensively explored both experimentally and theoretically. While emerging patterns often show one specific symmetry (e.g. nematic lane patterns or polarized traveling flocks), depending on the symmetry of the alignment interactions patterns with different symmetries can apparently coexist. Indeed, recent experiments with an actomysin motility assay suggest that polar and nematic patterns of actin filaments can interact and dynamically transform into each other. However, theoretical understanding of the mechanism responsible remains elusive. Here, we present a kinetic approach complemented by a hydrodynamic theory for agents with mixed alignment symmetries, which captures the experimentally observed phenomenology and provides a theoretical explanation for the coexistence and interaction of patterns with different symmetries. We show that local, pattern-induced symmetry breaking can account for dynamically coexisting patterns with different symmetries. Specifically, in a regime with moderate densities and a weak polar bias in the alignment interaction, nematic bands show a local symmetry-breaking instability within their high-density core region, which induces the formation of polar waves along the bands. These instabilities eventually result in a self-organized system of nematic bands and polar waves that dynamically transform into each other. Our study reveals a mutual feedback mechanism between pattern formation and local symmetry breaking in active matter that has interesting consequences for structure formation in biological systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源