论文标题
生成相对于其交替运行的排列功能
Generating functions of permutations with respect to their alternating runs
论文作者
论文摘要
我们提供了一个简短的直接证明,即固定长度的所有排列的生成函数$ n \ geq 4 $都是$(1+z)^m $可将$(1+z)^m $除外的,其中$ m = \ lfloor(n-2)/2 \ rfloor $。
We present a short, direct proof of the fact that the generating function of all permutations of a fixed length $n\geq 4$ is divisible by $(1+z)^m$, where $m=\lfloor (n-2)/2 \rfloor$.