论文标题
精炼UCCA的隐性论点注释
Refining Implicit Argument Annotation for UCCA
论文作者
论文摘要
谓词题目结构分析是文本含义表示的核心组成部分。句子中未明确提到某些论点的事实引起了语言理解的歧义,并且使机器很难正确解释文本。但是,只有很少的资源代表了NLU的隐式角色,而NLP中的现有研究仅在语言形式省略的参数类别之间进行粗略区分。本文提出了一种对普遍概念认知注释基础层的细粒度隐式论证注释的类型学。提出的隐式参数分类是由隐式角色解释理论驱动的,由六种类型组成:Deictic,Generic,基于类型的,类型可识别,非特异性和迭代设置。我们通过重新访问UCCA EWT语料库的一部分,提供了一个用改进层注释的新数据集并与其他方案进行比较分析来体现我们的设计。
Predicate-argument structure analysis is a central component in meaning representations of text. The fact that some arguments are not explicitly mentioned in a sentence gives rise to ambiguity in language understanding, and renders it difficult for machines to interpret text correctly. However, only few resources represent implicit roles for NLU, and existing studies in NLP only make coarse distinctions between categories of arguments omitted from linguistic form. This paper proposes a typology for fine-grained implicit argument annotation on top of Universal Conceptual Cognitive Annotation's foundational layer. The proposed implicit argument categorisation is driven by theories of implicit role interpretation and consists of six types: Deictic, Generic, Genre-based, Type-identifiable, Non-specific, and Iterated-set. We exemplify our design by revisiting part of the UCCA EWT corpus, providing a new dataset annotated with the refinement layer, and making a comparative analysis with other schemes.