论文标题
证据表明1I/2017 U1(`OUMUAMUA)由分子氢冰组成
Evidence that 1I/2017 U1 (`Oumuamua) was composed of molecular hydrogen ice
论文作者
论文摘要
`OUMUAMUA(I1 2017)是观察到的第一个宏观($ l \ sim100 \,{\ rm m} $)的身体,观察到在未结合的双曲线轨道上遍历内部太阳系。它的光曲线显示出很强的周期性变化,并且没有显示出昏迷或分子量大的发射的暗示。星体测量表明,“ Oumuamua在其出站轨迹上经历了非重力加速度,但能量平衡参数表明,这种加速度与太阳系彗星所展示的水冰升华驱动的射流不一致。我们表明,如果Oumaumua的所有观察到的特性都可以解释,如果它包含很大一部分分子氢(H $ _ {2} $)冰。 h $ _ {2} $以与事件太阳通量成比例的速率升华会产生一个覆盖的喷气机,从而再现了观察到的加速度。从升华的质量浪费会导致人体轴比单调增加,从而解释了“ Oumuamua的形状”。通过太阳系对OUMUAMUA的轨迹进行后退追踪允许在遇到太阳之前计算其质量和纵横比。我们表明,h $ _ {2} $ - 富含富的物体是在最冷的巨型分子云中形成的,其中数字密度是$ n \ sim10^5 $,而温度接近$ t = 3 \,{\ rm k} $背景。对银河宇宙射线的形态接触意味着$τ\ sim 100 $ myr年龄,解释了“ Oumuamua的入站轨迹的运动学”。
`Oumuamua (I1 2017) was the first macroscopic ($l\sim100\,{\rm m}$) body observed to traverse the inner solar system on an unbound hyperbolic orbit. Its light curve displayed strong periodic variation, and it showed no hint of a coma or emission from molecular outgassing. Astrometric measurements indicate that 'Oumuamua experienced non-gravitational acceleration on its outbound trajectory, but energy balance arguments indicate this acceleration is inconsistent with a water ice sublimation-driven jet of the type exhibited by solar system comets. We show that all of `Oumaumua's observed properties can be explained if it contained a significant fraction of molecular hydrogen (H$_{2}$) ice. H$_{2}$ sublimation at a rate proportional to the incident solar flux generates a surface-covering jet that reproduces the observed acceleration. Mass wasting from sublimation leads to monotonic increase in the body axis ratio, explaining `Oumuamua's shape. Back-tracing `Oumuamua's trajectory through the Solar System permits calculation of its mass and aspect ratio prior to encountering the Sun. We show that H$_{2}$-rich bodies plausibly form in the coldest dense cores of Giant Molecular Clouds, where number densities are of order $n\sim10^5$, and temperatures approach the $T=3\,{\rm K}$ background. Post-formation exposure to galactic cosmic rays implies a $τ\sim 100$ Myr age, explaining the kinematics of `Oumuamua's inbound trajectory.