论文标题

量子Mereology:将希尔伯特空间分解为具有准经典动力学的子系统

Quantum Mereology: Factorizing Hilbert Space into Subsystems with Quasi-Classical Dynamics

论文作者

Carroll, Sean M., Singh, Ashmeet

论文摘要

我们研究了如何将希尔伯特空间分解为首选的张量产生分解的问题,而没有任何先前存在的结构以外的其他结构,尤其是将两分部分分解为“系统”和“环境”的情况。可以通过寻找表现出准古典行为的子系统来定义这种分解。正确的分解是系统的指针状态相对可靠的环境监测(它们与环境的纠缠并没有不断地急剧增加),并且在近似经典的轨迹周围定位。我们提出了一种基本算法,用于通过最大程度地减少纠缠生长和系统内部扩散的结合来找到这种分解。这两种属性都以不同的方式与区域有关。这种形式主义可能与量子纠缠中时空的出现有关。

We study the question of how to decompose Hilbert space into a preferred tensor-product factorization without any pre-existing structure other than a Hamiltonian operator, in particular the case of a bipartite decomposition into "system" and "environment." Such a decomposition can be defined by looking for subsystems that exhibit quasi-classical behavior. The correct decomposition is one in which pointer states of the system are relatively robust against environmental monitoring (their entanglement with the environment does not continually and dramatically increase) and remain localized around approximately-classical trajectories. We present an in-principle algorithm for finding such a decomposition by minimizing a combination of entanglement growth and internal spreading of the system. Both of these properties are related to locality in different ways. This formalism could be relevant to the emergence of spacetime from quantum entanglement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源