论文标题

连续时间随机步行的大偏差

Large deviations for continuous time random walks

论文作者

Wang, Wanli, Barkai, Eli, Burov, Stanislav

论文摘要

最近在复杂环境(如细胞和其他玻璃系统)中观察到随机行走的观察表明,颗粒在其尾部的扩散遵循空间指数衰变,而不是规范的高斯。我们使用广泛适用的连续时间随机步行模型,并获得传播器的大偏差描述。在轻度的条件下,微观跳高长度分布的分布呈指数衰减或更快,即排除了像电力法分布的跳跃长度,并且等待时间的分布在短期等待时间分析,粒子的扩散遵循较大的距离衰减,并具有a Goolegarithmic Recorcection。在这里,我们展示了跳跃事件的反束式事件如何减少效果,而束间和间歇性则可以增强效果。我们采用连续时间随机步行模型的精确解决方案来测试大偏差理论。

Recently observation of random walks in complex environments like the cell and other glassy systems revealed that the spreading of particles, at its tails, follows a spatial exponential decay instead of the canonical Gaussian. We use the widely applicable continuous time random walk model and obtain the large deviation description of the propagator. Under mild conditions that the microscopic jump lengths distribution is decaying exponentially or faster i.e. Lévy like power law distributed jump lengths are excluded, and that the distribution of the waiting times is analytical for short waiting times, the spreading of particles follows an exponential decay at large distances, with a logarithmic correction. Here we show how anti-bunching of jump events reduces the effect, while bunching and intermittency enhances it. We employ exact solutions of the continuous time random walk model to test the large deviation theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源