论文标题
视频框架外推的外推间周期抗性学习
Extrapolative-Interpolative Cycle-Consistency Learning for Video Frame Extrapolation
论文作者
论文摘要
视频框架外推是在给出过去框架时预测未来帧的任务。与以前通常专注于模块设计或网络构建的研究不同,我们建议使用预训练的框架插值模块提出一种新型的外推间隔循环(EIC)损失,以提高外推性能。在许多视觉任务中,两个函数空间之间的稳定预测已使用。我们使用两个映射函数来制定这种周期矛盾。框架外推和插值。由于预测中间帧比通过对象遮挡和运动不确定性预测未来帧要容易得多,因此插值模块可以有效地为训练外推函数提供指导信号。 EIC损失可以应用于任何现有的外推算法,并保证在短时间内以及未来的框架中的一致预测。实验结果表明,仅将EIC损失添加到现有基线上,就会在UCF101和KITTI数据集上提高外推性能。
Video frame extrapolation is a task to predict future frames when the past frames are given. Unlike previous studies that usually have been focused on the design of modules or construction of networks, we propose a novel Extrapolative-Interpolative Cycle (EIC) loss using pre-trained frame interpolation module to improve extrapolation performance. Cycle-consistency loss has been used for stable prediction between two function spaces in many visual tasks. We formulate this cycle-consistency using two mapping functions; frame extrapolation and interpolation. Since it is easier to predict intermediate frames than to predict future frames in terms of the object occlusion and motion uncertainty, interpolation module can give guidance signal effectively for training the extrapolation function. EIC loss can be applied to any existing extrapolation algorithms and guarantee consistent prediction in the short future as well as long future frames. Experimental results show that simply adding EIC loss to the existing baseline increases extrapolation performance on both UCF101 and KITTI datasets.