论文标题

通过多适应网络的任意样式转移

Arbitrary Style Transfer via Multi-Adaptation Network

论文作者

Deng, Yingying, Tang, Fan, Dong, Weiming, Sun, Wen, Huang, Feiyue, Xu, Changsheng

论文摘要

任意风格转移是一个重要的主题,具有研究价值和应用前景。鉴于内容图像和引用样式绘画的所需样式转移将以颜色色调和样式绘画的生动式笔触模式呈现内容图像,同时维护详细的内容结构信息。样式转移方法最初将学习内容和样式参考的内容和样式表示形式,然后生成由这些表示形式引导的风格化图像。在本文中,我们提出了涉及两个自动适应(SA)模块和一个共同适应(CA)模块的多适应网络:SA模块可自适应地删除内容和样式表示形式,即内容SA模块,即content sa模块使用位置使用自我意见,以增强频道的自我表达方式来增强频道自我的样式来增强频道的自我表现来增强频道的自我表述; CA模块通过以非本地方式计算分离的内容和样式特征之间的局部相似性来重新布置样式表示的分布。此外,新的解开损失函数使我们的网络能够提取主要样式模式和精确的内容结构,以分别适应各种输入图像。各种定性和定量实验表明,所提出的多适应网络比最先进的样式转移方法取得了更好的结果。

Arbitrary style transfer is a significant topic with research value and application prospect. A desired style transfer, given a content image and referenced style painting, would render the content image with the color tone and vivid stroke patterns of the style painting while synchronously maintaining the detailed content structure information. Style transfer approaches would initially learn content and style representations of the content and style references and then generate the stylized images guided by these representations. In this paper, we propose the multi-adaptation network which involves two self-adaptation (SA) modules and one co-adaptation (CA) module: the SA modules adaptively disentangle the content and style representations, i.e., content SA module uses position-wise self-attention to enhance content representation and style SA module uses channel-wise self-attention to enhance style representation; the CA module rearranges the distribution of style representation based on content representation distribution by calculating the local similarity between the disentangled content and style features in a non-local fashion. Moreover, a new disentanglement loss function enables our network to extract main style patterns and exact content structures to adapt to various input images, respectively. Various qualitative and quantitative experiments demonstrate that the proposed multi-adaptation network leads to better results than the state-of-the-art style transfer methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源