论文标题
在Lofar射电望远镜的宇宙射线能量尺度上
On the cosmic-ray energy scale of the LOFAR radio telescope
论文作者
论文摘要
宇宙射线通常在Lofar上进行测量,包括一系列的天线和Lofar Radboud空气淋浴阵列(Lora),这是一系列塑料闪烁体。在本文中,我们提出了与Lofar的宇宙射线能量量表有关的两个结果。首先,我们使用无线电和粒子技术介绍宇宙射线能量的重建,并讨论事件的逐个事件和绝对规模的不确定性。用每种方法重建的最终能量显示出良好的一致性,并且由于基于无线电的重建能量在事件到事件的基础上具有较小的不确定性,因此Lofar分析将来会使用该技术。其次,我们提出在Lofar测得的空气阵雨的辐射能,并证明如何使用辐射能来比较不同实验的能量尺度。辐射能在空气淋浴中与电磁能相互缩放,这又可能与主要粒子的能量有关。一旦考虑了局部磁场,辐射能就可以直接比较基于洛拉粒子的能量尺度和皮埃尔螺旋钻天文台的能量。它们被证明同意在1 MeV的辐射能内(6 $ \ pm $ 20)内,其中比较的不确定性由每个实验的天线校准占主导地位。这项研究激发了便携式无线电阵列的发展,该阵列将用于使用辐射能和相同的天线对不同实验的能量尺度进行仔细校准,从而显着降低了比较的不确定性。
Cosmic rays are routinely measured at LOFAR, both with a dense array of antennas and with the LOFAR Radboud air shower Array (LORA) which is an array of plastic scintillators. In this paper, we present two results relating to the cosmic-ray energy scale of LOFAR. First, we present the reconstruction of cosmic-ray energy using radio and particle techniques along with a discussion of the event-by-event and absolute scale uncertainties. The resulting energies reconstructed with each method are shown to be in good agreement, and because the radio-based reconstructed energy has smaller uncertainty on an event-to-event basis, LOFAR analyses will use that technique in the future. Second, we present the radiation energy of air showers measured at LOFAR and demonstrate how radiation energy can be used to compare the energy scales of different experiments. The radiation energy scales quadratically with the electromagnetic energy in an air shower, which can in turn be related to the energy of the primary particle. Once the local magnetic field is accounted for, the radiation energy allows for a direct comparison between the LORA particle-based energy scale and that of the Pierre Auger Observatory. They are shown to agree to within (6$\pm$20)% for a radiation energy of 1 MeV, where the uncertainty on the comparison is dominated by the antenna calibrations of each experiment. This study motivates the development of a portable radio array which will be used to cross-calibrate the energy scales of different experiments using radiation energy and the same antennas, thereby significantly reducing the uncertainty on the comparison.