论文标题
统计歧管上的梯度孤子
Gradient solitons on statistical manifolds
论文作者
论文摘要
我们为某些特定的夫妻$(g,\ nabla)$ pseudo-riemannian指标和仿射连接提供必要的条件,如果我们几乎具有爱因斯坦,几乎是爱因斯坦,几乎是ricci,几乎是yamabe solitons,或者几乎是yamabe solitons,或者是歧管上更一般的solitons。在特定情况下,我们为歧管的体积建立了一个公式,并为RICCI曲率张量场的规范提供了较低和上限。
We provide necessary and sufficient conditions for some particular couples $(g,\nabla)$ of pseudo-Riemannian metrics and affine connections to be statistical structures if we have gradient almost Einstein, almost Ricci, almost Yamabe solitons, or a more general type of solitons on the manifold. In particular cases, we establish a formula for the volume of the manifold and give a lower and an upper bound for the norm of the Ricci curvature tensor field.