论文标题
基于分子Mux的物理无吻合功能
Molecular MUX-Based Physical Unclonable Functions
论文作者
论文摘要
物理上的不可吻合功能(PUF)是小型电路,被广泛用作身份验证的硬件安全原始。由于制造和过程变化的固有随机性,这些电路可以产生独特的签名。本文使用双轨表示基于多路复用器(MUX)PUF介绍了分子PUF。可以注意到,以前没有出现过分子PUF。使用16个分子反应合成每个分子多路复用器。假定分子反应的速率常数的固有变化可提供PUF唯一性所需的固有随机性。基于反应速率常数的高斯分布,本文模拟了包含8、16、32和64个阶段的线性分子Mux PUF的芯片和片间变化。这些变化分别用于计算可靠性和唯一性。结果表明,对于本文中使用的速率常数,尽管8态分子Mux PUF并不是因为PUF,但包含16个或更高阶段的PUF作为分子PUF。像电子PUF一样,增加阶段的数量会提高PUF的独特性和可靠性
Physical unclonable functions (PUFs) are small circuits that are widely used as hardware security primitives for authentication. These circuits can generate unique signatures because of the inherent randomness in manufacturing and process variations. This paper introduces molecular PUFs based on multiplexer (MUX) PUFs using dual-rail representation. It may be noted that molecular PUFs have not been presented before. Each molecular multiplexer is synthesized using 16 molecular reactions. The intrinsic variations of the rate constants of the molecular reactions are assumed to provide inherent randomness necessary for uniqueness of PUFs. Based on Gaussian distribution of the rate constants of the reactions, this paper simulates intra-chip and inter-chip variations of linear molecular MUX PUFs containing 8, 16, 32 and 64 stages. These variations are, respectively, used to compute reliability and uniqueness. It is shown that, for the rate constants used in this paper, although 8-state molecular MUX PUFs are not useful as PUFs, PUFs containing 16 or higher stages are useful as molecular PUFs. Like electronic PUFs, increasing the number of stages increases uniqueness and reliability of the PUFs