论文标题
多层量子图的可简化费米表面,包括堆叠石墨烯
Reducible Fermi surface for multi-layer quantum graphs including stacked graphene
论文作者
论文摘要
我们构造了两种类型的多层量子图(公制图上的schrödingeroberators),其中波动和能量的分散函数被证明是单层分散函数中的多项式。这导致代数费米表面以任何能量在任何能量中降低了几个成分。每个组件为图形运算符的频谱贡献了一组频段。当层是石墨烯时,允许在相同的多层结构内允许AA-,AB-和ABC堆积。当多层耦合时,单层石墨烯断裂的锥形奇异性(狄拉克锥)的特征,除了特殊的AA堆积。我们引入的工具之一是通过将两个图粘合在一起,用于获得周期性量子图的分散函数的手术型演算。
We construct two types of multi-layer quantum graphs (Schrödinger operators on metric graphs) for which the dispersion function of wave vector and energy is proved to be a polynomial in the dispersion function of the single layer. This leads to the reducibility of the algebraic Fermi surface, at any energy, into several components. Each component contributes a set of bands to the spectrum of the graph operator. When the layers are graphene, AA-, AB-, and ABC-stacking are allowed within the same multi-layer structure. Conical singularities (Dirac cones) characteristic of single-layer graphene break when multiple layers are coupled, except for special AA-stacking. One of the tools we introduce is a surgery-type calculus for obtaining the dispersion function for a periodic quantum graph by gluing two graphs together.