论文标题

欺骗性的删除,以保护社交平台上撤回的帖子

Deceptive Deletions for Protecting Withdrawn Posts on Social Platforms

论文作者

Minaei, Mohsen, Mouli, S Chandra, Mondal, Mainack, Ribeiro, Bruno, Kate, Aniket

论文摘要

在线社交平台上普遍存在拨入不良的思想和个人信息。在许多情况下,用户后悔发布了此类内容。为了回顾性地纠正用户共享决策中的这些错误,大多数平台提供了提取内容的机制(删除)机制,而社交媒体用户经常使用它们。具有讽刺意味的是,也许不幸的是,这些删除使用户更容易受到恶意演员的侵犯隐私侵犯,这些恶意行为者特别搜寻了大规模的删除术。进行这种狩猎的原因很简单:删除帖子是一个有力的信号,表明该帖子可能会损害其所有者。如今,多个档案服务已经在扫描这些已删除的帖子的社交媒体。此外,正如我们在这项工作中所证明的那样,强大的机器学习模型可以大规模检测破坏删除。 为了将这种全球对手限制在用户被遗忘的权利中,我们引入了欺骗性删除,这是一种诱饵机制,可最大程度地减少对抗性优势。我们的机制注入了诱饵删除,因此在对手之间创建了一个两人Minmax游戏,该游戏试图对删除的帖子中的损害内容进行分类,并使用挑战者进行诱饵删除,以伪装真正的有害删除。我们正式化了两个玩家之间的欺骗性游戏,确定对手或挑战者可以赢得比赛的条件,并讨论这两个极端之间的场景。我们将欺骗性的删除机制应用于Twitter上的实际任务:隐藏有害的推文删除。我们表明,强大的挑战者可以击败强大的全球对手,从而大大提高标准,并在社交平台上真正被遗忘的能力给人留下了深远的希望。

Over-sharing poorly-worded thoughts and personal information is prevalent on online social platforms. In many of these cases, users regret posting such content. To retrospectively rectify these errors in users' sharing decisions, most platforms offer (deletion) mechanisms to withdraw the content, and social media users often utilize them. Ironically and perhaps unfortunately, these deletions make users more susceptible to privacy violations by malicious actors who specifically hunt post deletions at large scale. The reason for such hunting is simple: deleting a post acts as a powerful signal that the post might be damaging to its owner. Today, multiple archival services are already scanning social media for these deleted posts. Moreover, as we demonstrate in this work, powerful machine learning models can detect damaging deletions at scale. Towards restraining such a global adversary against users' right to be forgotten, we introduce Deceptive Deletion, a decoy mechanism that minimizes the adversarial advantage. Our mechanism injects decoy deletions, hence creating a two-player minmax game between an adversary that seeks to classify damaging content among the deleted posts and a challenger that employs decoy deletions to masquerade real damaging deletions. We formalize the Deceptive Game between the two players, determine conditions under which either the adversary or the challenger provably wins the game, and discuss the scenarios in-between these two extremes. We apply the Deceptive Deletion mechanism to a real-world task on Twitter: hiding damaging tweet deletions. We show that a powerful global adversary can be beaten by a powerful challenger, raising the bar significantly and giving a glimmer of hope in the ability to be really forgotten on social platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源