论文标题
弱耦合的抗铁磁旋转链中的非线性孤子限制
Non-linear soliton confinement in weakly coupled antiferromagnetic spin chains
论文作者
论文摘要
我们使用半经典的非线性sigma模型分析了准单维的,较大的,大$ s $ Quantum抗铁磁体的低能动力学。鞍点近似导致正弦戈登方程,该方程支持孤子溶液。这些对应于空间扩展的域壁的运动。远程磁性顺序是弱链间耦合的结果。在排序温度以下,与附近链的耦合导致与两个域壁分离有关的能源成本。从纠结的两种溶液中,我们计算有效的限制潜力。与孤子的尺寸相比,在大距离上,电势是线性的,如点状域壁所预期的那样。在小距离处,孤子的逐渐歼灭会削弱有效的吸引力,并使潜在的二次吸引力。通过数值求解有效的一维schröedinger方程,具有这种非线性限制电位,我们计算了孤子结合态频谱。我们将理论应用于Cafe $ _ {2} $ o $ _ {4} $,一种基于抗firomagnetic Zig-Zag链的各向异性$ s = 5/2 $磁铁。使用非弹性中子散射,我们能够解决略低于Néel温度$ t_ \ textrm {n} \ 200 $ 〜k的七个离散能级。我们的非线性限制模型在大型空间扩展的孤子子方面很好地描述了这些模式。
We analyze the low-energy dynamics of quasi one dimensional, large-$S$ quantum antiferromagnets with easy-axis anisotropy, using a semi-classical non-linear sigma model. The saddle point approximation leads to a sine Gordon equation which supports soliton solutions. These correspond to the movement of spatially extended domain walls. Long-range magnetic order is a consequence of a weak inter-chain coupling. Below the ordering temperature, the coupling to nearby chains leads to an energy cost associated with the separation of two domain walls. From the kink-antikink two-soliton solution, we compute the effective confinement potential. At distances large compared to the size of the solitons the potential is linear, as expected for point-like domain walls. At small distances the gradual annihilation of the solitons weakens the effective attraction and renders the potential quadratic. From numerically solving the effective one dimensional Schröedinger equation with this non-linear confinement potential we compute the soliton bound state spectrum. We apply the theory to CaFe$_{2}$O$_{4}$, an anisotropic $S=5/2$ magnet based upon antiferromagnetic zig-zag chains. Using inelastic neutron scattering, we are able to resolve seven discrete energy levels for spectra recorded slightly below the Néel temperature $T_\textrm{N}\approx 200$~K. These modes are well described by our non-linear confinement model in the regime of large spatially extended solitons.