论文标题

概述:用于微观结构表征和分析的计算机视觉和机器学习

Overview: Computer vision and machine learning for microstructural characterization and analysis

论文作者

Holm, Elizabeth A., Cohn, Ryan, Gao, Nan, Kitahara, Andrew R., Matson, Thomas P., Lei, Bo, Yarasi, Srujana Rao

论文摘要

微观结构的表征和分析是微观结构科学的基础,将材料结构与其组成,过程历史和特性联系起来。微观结构量化传​​统上涉及一个人类决定先验的方法,然后设计出专门构建的方法来做到这一点。但是,包括计算机视觉(CV)和机器学习(ML)在内的数据科学的最新进展为从微观结构图像中提取信息提供了新的方法。此概述调查CV方法以数值编码微观结构图像中包含的视觉信息,然后将其输入到监督或不监督的ML算法中,这些算法在高维图像表示中找到关联和趋势。用于微观结构表征和分析的CV/ML系统涵盖了图像分析任务的分类学,包括图像分类,语义分割,对象检测和实例分割。这些工具可实现新的微观结构分析方法,包括开发新的,丰富的视觉指标以及发现 - 微观结构 - 理性关系的发现。

The characterization and analysis of microstructure is the foundation of microstructural science, connecting the materials structure to its composition, process history, and properties. Microstructural quantification traditionally involves a human deciding a priori what to measure and then devising a purpose-built method for doing so. However, recent advances in data science, including computer vision (CV) and machine learning (ML) offer new approaches to extracting information from microstructural images. This overview surveys CV approaches to numerically encode the visual information contained in a microstructural image, which then provides input to supervised or unsupervised ML algorithms that find associations and trends in the high-dimensional image representation. CV/ML systems for microstructural characterization and analysis span the taxonomy of image analysis tasks, including image classification, semantic segmentation, object detection, and instance segmentation. These tools enable new approaches to microstructural analysis, including the development of new, rich visual metrics and the discovery of processing-microstructure-property relationships.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源