论文标题

次波长等离激元结构中的光诱导温度梯度:纳米酮的热液化

Photoinduced Temperature Gradients in Sub-wavelength Plasmonic Structures: The Thermoplasmonics of Nanocones

论文作者

Cunha, Joao, Guo, Tian-Long, Koya, Alemayehu Nana, Toma, Andrea, Prato, Mirko, Della Valle, Giuseppe, Alabastri, Alessandro, Zaccaria, Remo Proietti

论文摘要

等离激元结构以其能力有效将光转化为纳米级的热量的能力而闻名。但是,尽管有可能产生深层电磁热点,但极端局部的热热点的形成是一个开放的研究挑战,仅仅是因为热量沿整个金属纳米结构的扩散扩散。在这里,我们通过利用单个金纳米酮来应对这一挑战。从理论上讲,这些结构如何确实如何实现金属内的极高温度梯度,从而导致了深层波长热热点,因为即使在连续的波照明下,它们在共振条件下在谐振条件下将光集中在顶点。就三维温度分布而言,采用了三维有限元方法模型来研究结构和随后的热质行为中的电磁场。我们展示了后者如何受到周围环境的纳米酮大小,形状和组成的影响。最后,我们预计将光诱导的温度梯度在纳米酮中的应用中用于光荧光学和热电学或热诱导的纳米机制。

Plasmonic structures are renowned for their capability to efficiently convert light into heat at the nanoscale. However, despite the possibility to generate deep sub-wavelength electromagnetic hot spots, the formation of extremely localized thermal hot spots is an open challenge of research, simply because of the diffusive spread of heat along the whole metallic nanostructure. Here we tackle this challenge by exploiting single gold nanocones. We theoretically show how these structures can indeed realize extremely high temperature gradients within the metal, leading to deep sub-wavelength thermal hot spots, owing to their capability of concentrating light at the apex under resonant conditions even under continuous wave illumination. A three-dimensional Finite Element Method model is employed to study the electromagnetic field in the structure and subsequent thermoplasmonic behaviour, in terms of the three-dimensional temperature distribution. We show how the latter is affected by nanocone size, shape, and composition of the surrounding environment. Finally, we anticipate the use of photoinduced temperature gradients in nanocones for applications in optofluidics and thermoelectrics or for thermally induced nanofabrication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源