论文标题

陈述了标记为3个manifolds/表面的绞线模块,调查

Stated skein modules of marked 3-manifolds/surfaces, a survey

论文作者

Lê, Thang T. Q., Yu, Tao

论文摘要

我们对3个manifolds/表面的陈述的绞线模块/代数进行了一些新的和新的结果调查。对于通用量子参数,我们讨论了3个杂质情况的分裂同态,即标记表面(或边界刺穿表面)及其嵌入到量子摩tori中的规定的绞线代数的一般结构。对于1个量子参数的根,我们讨论了Frobenius同构(对于标记的3个manifolds和标记的表面),描述标记表面的Skein代数的中心,中心上方代数的尺寸以及Skein Algebra的代表理论。特别是,我们表明,在任何根部的任何根上,非锁定的标记表面的绞线代数是最大序列。我们对穿刺圆环的绞线代数的Azumaya基因座进行了完整描述,并为封闭表面提供了部分结果。

We give a survey of some old and new results about the stated skein modules/algebras of 3-manifolds/surfaces. For generic quantum parameter, we discuss the splitting homomorphism for the 3-manifold case, general structures of the stated skein algebras of marked surfaces (or bordered punctured surfaces) and their embeddings into quantum tori. For roots of 1 quantum parameter, we discuss the Frobenius homomorphism (for both marked 3-manifolds and marked surfaces), describe the center of the skein algebra of marked surfaces, the dimension of the skein algebra over the center, and the representation theory of the skein algebra. In particular, we show that the skein algebra of non-closed marked surface at any root of 1 is a maximal order. We give a full description of the Azumaya locus of the skein algebra of the puncture torus and give partial results for closed surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源