论文标题

第四次Parelevé和Ermakov方程:量子不变和新的可溶解时间依赖时间的汉密尔顿人

Fourth Painlevé and Ermakov equations: quantum invariants and new exactly-solvable time-dependent Hamiltonians

论文作者

Zelaya, Kevin, Marquette, Ian, Hussin, Véronique

论文摘要

在这项工作中,我们基于第四次Parelevé和Ermakov方程的解决方案引入了对完全依赖时间的哈密顿量的新实现。后者是通过在未知的量子不变式和一组具有时间依赖系数的三阶相互交叉操作员之间引入形状不变条件来实现的。新的量子不变性是通过在众所周知的参数振荡器不变器中添加变形项来构建的。这种变形通过Ermakov方程的解明确取决于时间,从而确保了每次哈密顿量新的时间依赖性潜力的规律性。另一方面,借助适当的重新训练,出现了第四个painlevé方程,其参数决定了量子不变的光谱行为。特别是,三阶梯子算子的特征函数导致了schrödinger方程的几个溶液序列,这些溶液是根据riccati方程,俄克拉何托多项式或衍生物非线性nonlinearearearearearearearearearearedinger方程的非线性结合状态确定的。值得注意的是,人们注意到,从非线性结合状态方面,解决方案导致与等距特征值的量子不变,其中包含(n+1)维度和无限特征函数序列。依赖时间依赖的汉密尔顿人的家族因此,据作者所知,在固定和非组织系统的文献中未被注意到。

In this work, we introduce a new realization of exactly-solvable time-dependent Hamiltonians based on the solutions of the fourth Painlevé and the Ermakov equations. The latter is achieved by introducing a shape-invariant condition between an unknown quantum invariant and a set of third-order intertwining operators with time-dependent coefficients. The new quantum invariant is constructed by adding a deformation term to the well-known parametric oscillator invariant. Such a deformation depends explicitly on time through the solutions of the Ermakov equation, which ensures the regularity of the new time-dependent potential of the Hamiltonian at each time. On the other hand, with the aid of the proper reparametrization, the fourth Painlevé equation appears, the parameters of which dictate the spectral behavior of the quantum invariant. In particular, the eigenfunctions of the third-order ladder operators lead to several sequences of solutions to the Schrödinger equation, determined in terms of the solutions of a Riccati equation, Okamoto polynomials, or nonlinear bound states of the derivative nonlinear Schrödinger equation. Remarkably, it is noticed that the solutions in terms of the nonlinear bound states lead to a quantum invariant with equidistant eigenvalues, which contains both an (N+1)-dimensional and an infinite sequence of eigenfunctions. The resulting family of time-dependent Hamiltonians is such that, to the authors' knowledge, have been unnoticed in the literature of stationary and nonstationary systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源