论文标题
Skorohod样式的随机微分方程的耦合系统的适应性良好
Well-posedness of a coupled system of Skorohod-like stochastic differential equations
论文作者
论文摘要
我们研究了具有反射边界条件的Skorohod样随机微分方程的耦合系统的良好体系。该设置描述了由活跃的行人和被动行人组成的混合人群的疏散动态,并在一个带有障碍物,火和烟雾的域中移动。作为主要的工作技术,我们使用紧凑度方法以及Skorohod对有限域中构成的SDE的解决方案的表示。这种功能设置是建模和模拟行人动力学领域中的新观点。主要的挑战是处理模型方程中的耦合,以及域的多连接性和行人式式相互作用。
We study the well-posedness of a coupled system of Skorohod-like stochastic differential equations with reflecting boundary condition. The setting describes the evacuation dynamics of a mixed crowd composed of both active and passive pedestrians moving through a domain with obstacles, fire and smoke. As main working techniques, we use compactness methods and the Skorohod's representation of solutions to SDEs posed in bounded domains. This functional setting is a new point of view in the field of modeling and simulation pedestrian dynamics. The main challenge is to handle the coupling in the model equations together with the multiple-connectedness of the domain and the pedestrian-obstacle interaction.