论文标题

$ν= 1/3 $分数量子厅系统的低复杂特征状态

Low-complexity eigenstates of a $ν= 1/3$ fractional quantum Hall system

论文作者

Nachtergaele, Bruno, Warzel, Simone, Young, Amanda

论文摘要

我们在薄的圆柱几何形状中鉴定出Haldane的伪电势哈密顿式的截断版本的地面,因为它由指数的许多碎片矩阵乘积状态组成。这些状态是由晶格砖制成的,其特性将被讨论。我们还报告了光谱差距的证明,这意味着在最大填充$ν= 1/3 $处的基本分数量子厅液体的不可压缩性。低能量激发和在正能密度下的大量多体疤痕,但也使用较低的复杂性,也可以使用瓷砖概念来鉴定。

We identify the the ground-state of a truncated version of Haldane's pseudo-potential Hamiltonian in a thin cylinder geometry as being composed of exponentially many fragmented matrix product states. These states are constructed by lattice tilings and their properties are discussed. We also report on a proof of a spectral gap, which implies the incompressibility of the underlying fractional quantum Hall liquid at maximal filling $ν= 1/3$. Low-energy excitations and an extensive number of many-body scars at positive energy density, but nevertheless low complexity, are also identified using the concept of tilings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源