论文标题
从临界点淬灭后的非平衡动力学指数的老化指数
Aging Exponents for Nonequilibrium Dynamics following Quenches from Critical Point
论文作者
论文摘要
通过Monte Carlo模拟,我们研究了最近邻居Ising模型中的非平衡动力学,然后遵循相图的有序区域内的淬火到达的点。有了广泛的目标,即量化了与空间相关和不相关的初始配置对应的非平衡通用类别,在本文中,我们为从临界点淬火的订单参数自相关函数的衰减提供了结果。这种自相关是远程平衡系统中衰老动力学的重要探针,通常显示出幂律缩放。从对仿真结果的最新分析中,我们量化了模型的保守和未保守和未保守的(订单参数)动力学的相应指数($ \mathbfλ$),在空间维度$ d = 3 $中。通过结构分析,我们证明了指数满足界限。我们还重新审视$ d = 2 $ case,以获得更准确的结果。看来,无论尺寸如何,保守和未保守的动力学都相同。
Via Monte Carlo simulations we study nonequilibrium dynamics in the nearest-neighbor Ising model, following quenches to points inside the ordered region of the phase diagram. With the broad objective of quantifying the nonequilibrium universality classes corresponding to spatially correlated and uncorrelated initial configurations, in this paper we present results for the decay of the order-parameter autocorrelation function for quenches from the critical point. This autocorrelation is an important probe for the aging dynamics in far-from-equilibrium systems and typically exhibits power-law scaling. From the state-of-the-art analysis of the simulation results we quantify the corresponding exponents ($\mathbfλ$) for both conserved and nonconserved (order parameter) dynamics of the model, in space dimension $d=3$. Via structural analysis we demonstrate that the exponents satisfy a bound. We also revisit the $d=2$ case to obtain more accurate results. It appears that irrespective of the dimension, $λ$ is same for both conserved and nonconserved dynamics.