论文标题
椭圆运算符和$ j $ holomormorphic Maps的超级符号的近似布里尔·纳特理论
Equivariant Brill-Noether theory for elliptic operators and super-rigidity of $J$-holomorphic maps
论文作者
论文摘要
固定索引的弗雷德霍尔姆操作员的空间根据内核的尺寸对子曼群进行了分层。几何因素通常会导致有关椭圆运营商与这些子序列的混凝土家族相交的问题:交叉点是非空的吗?他们平滑吗?他们的包包是什么?本文的目的是开发在模棱两可情况下解决这些问题的工具。这项工作的一个重要动机是用于多个$ j $ holomormormormorphic地图的多个封面的横向问题。作为一个应用程序,我们使用框架来简要说明Wendl的超级基因猜想证明。
The space of Fredholm operators of fixed index is stratified by submanifolds according to the dimension of the kernel. Geometric considerations often lead to questions about the intersections of concrete families of elliptic operators with these submanifolds: are the intersections non-empty? are they smooth? what are their codimensions? The purpose of this article is to develop tools to address these questions in equivariant situations. An important motivation for this work are transversality questions for multiple covers of $J$-holomorphic maps. As an application, we use our framework to give a concise exposition of Wendl's proof of the super-rigidity conjecture.