论文标题

快速,简单地修改牛顿的方法,有助于避免鞍点

A fast and simple modification of Newton's method helping to avoid saddle points

论文作者

Truong, Tuyen Trung, To, Tat Dat, Nguyen, Tuan Hang, Nguyen, Thu Hang, Nguyen, Hoang Phuong, Helmy, Maged

论文摘要

我们在本文中提出了新的Q-Newton的方法。更新规则在概念上非常简单,例如$ x_ {n+1} = x_n-w_n $其中$ w_n = pr_n = pr_ {a_n,+}(v_n)(v_n)-pr_ {a_n, - }(v_n)(v_n)$,带有$ a_n = \ nabla ^nabla ^2f(x_n)+nabl(x_n)+unabl+nabl | nabl | nabl | nabl | ^2. $ v_n = a_n^{ - 1}。\ nabla f(x_n)$。这里$δ_n$是一个适当的实数,因此$ a_n $是可逆的,$ pr_ {a_n,\ pm} $是由$ a_n $的正(相应负)特征值(相应负)特征值(相应负)特征值生成的向量子空间的投影。 本文的主要结果粗略地说,如果$ f $是$ c^3 $(可以在下面不受限制)和一个序列$ \ {x_n \} $,是由新的Q-Newton的方法从随机的初始点$ x_0 $,{\ bf}中构建的,那么限制点是一个关键点,而限制点也不是一个相同的方法。第一作者最近成功地将回溯线搜索纳入了新的Q-Newton的方法,从而解决了某些(非平滑)成本功能观察到的收敛保证问题。将讨论快速查找单变量杂形函数的零的应用程序。对众所周知的算法(例如BFG)和适应性立方体化进行了各种实验。

We propose in this paper New Q-Newton's method. The update rule is very simple conceptually, for example $x_{n+1}=x_n-w_n$ where $w_n=pr_{A_n,+}(v_n)-pr_{A_n,-}(v_n)$, with $A_n=\nabla ^2f(x_n)+δ_n||\nabla f(x_n)||^2.Id$ and $v_n=A_n^{-1}.\nabla f(x_n)$. Here $δ_n$ is an appropriate real number so that $A_n$ is invertible, and $pr_{A_n,\pm}$ are projections to the vector subspaces generated by eigenvectors of positive (correspondingly negative) eigenvalues of $A_n$. The main result of this paper roughly says that if $f$ is $C^3$ (can be unbounded from below) and a sequence $\{x_n\}$, constructed by the New Q-Newton's method from a random initial point $x_0$, {\bf converges}, then the limit point is a critical point and is not a saddle point, and the convergence rate is the same as that of Newton's method. The first author has recently been successful incorporating Backtracking line search to New Q-Newton's method, thus resolving the convergence guarantee issue observed for some (non-smooth) cost functions. An application to quickly finding zeros of a univariate meromorphic function will be discussed. Various experiments are performed, against well known algorithms such as BFGS and Adaptive Cubic Regularization are presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源