论文标题

截面为正曲率张量允许他们在爱因斯坦的指标张量

Sectionally positive curvature tensors admit a metric tensor under which they are Einstein

论文作者

Fodor, Dan Gregorian

论文摘要

令$ n \ geq 3 $和$ r_ {abcd} $为$(4,0)$截面为正弯曲型张量(张张量具有$(4,0)$曲率张量的所有本地对称性)。然后存在度量张量$ g_ {ab} $,以便$ r_ {abcd} \; g^{bd} = g_ {ac}λ$对于某些$λ$。此外,$ g_ {ab} $是唯一的唯一因素。

Let $n \geq 3$ and $R_{abcd}$ be a $(4,0)$ sectionally positive curvature-type tensor (a tensor possessing all the local symmetries of the $(4,0)$ curvature tensor). Then there exists a metric tensor $g_{ab}$ such that $R_{abcd}\; g^{bd} = g_{ac} λ$ for some $λ$. Furthermore, $g_{ab}$ is unique up to a constant factor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源