论文标题
伪差异操作员的逆问题的深神经网络:限量角度扫描仪的应用
Deep neural networks for inverse problems with pseudodifferential operators: an application to limited-angle tomography
论文作者
论文摘要
我们提出了一个新颖的卷积神经网络(CNN),称为$ψ$ donet,旨在在线性反问题的背景下学习伪数算子($ψ$ dos)。我们的起点是迭代软阈值算法(ISTA),这是一种众所周知的算法,可解决促进稀疏性的最小化问题。我们表明,在对远期操作员的相当普遍的假设下,ISTA的展开迭代可以解释为CNN的连续层,该层次又提供了相当通用的网络体系结构,这些构造具有针对涉及的参数的特定选择,可以重现ISTA或ISTA的iSta for ISTA,我们可以将其限制为filters filters filters filters filters filters filters filters filters filters filters filters filters filters filters filters filters。我们的案例研究是限量角X射线变换及其在限量角计算机断层扫描(LA-CT)中的应用。特别是,我们证明,在LA-CT的情况下,可以通过结合有限角度X射线变换的卷积性质和定义正态波线系统的卷积性质来确切地确定升级,降压和卷积的操作,这是我们$ψ$ donet和大多数深度学习方案的特征。我们测试了$ψ$捐赠的两个不同的实现,这些实现是从椭圆数据集产生的有限角度几何形状的模拟数据上测试的。这两种实现都提供了同样好的和值得注意的初步结果,显示了我们提出的方法的潜力,并为将相同想法应用于其他卷积运算符($ψ$ dos或傅立叶积分运算符)的方式铺平了道路。
We propose a novel convolutional neural network (CNN), called $Ψ$DONet, designed for learning pseudodifferential operators ($Ψ$DOs) in the context of linear inverse problems. Our starting point is the Iterative Soft Thresholding Algorithm (ISTA), a well-known algorithm to solve sparsity-promoting minimization problems. We show that, under rather general assumptions on the forward operator, the unfolded iterations of ISTA can be interpreted as the successive layers of a CNN, which in turn provides fairly general network architectures that, for a specific choice of the parameters involved, allow to reproduce ISTA, or a perturbation of ISTA for which we can bound the coefficients of the filters. Our case study is the limited-angle X-ray transform and its application to limited-angle computed tomography (LA-CT). In particular, we prove that, in the case of LA-CT, the operations of upscaling, downscaling and convolution, which characterize our $Ψ$DONet and most deep learning schemes, can be exactly determined by combining the convolutional nature of the limited angle X-ray transform and basic properties defining an orthogonal wavelet system. We test two different implementations of $Ψ$DONet on simulated data from limited-angle geometry, generated from the ellipse data set. Both implementations provide equally good and noteworthy preliminary results, showing the potential of the approach we propose and paving the way to applying the same idea to other convolutional operators which are $Ψ$DOs or Fourier integral operators.