论文标题

通过单调变量的通用喷雾膜配方

A generalized spray-flamelet formulation by means of a monotonic variable

论文作者

Maionchi, Daniela de Oliveira, Santos, Fabio Pereira dos, Melguizo-Gavilanes, Josué, Kokubun, Max Akira Endo

论文摘要

可以使用schvab-zel'dovich-liñan公式来描述喷雾薄片的外部结构。通常用于描述气态扩散火焰的描述的物理空间Z(X_I)的气态​​混合分子变量导致喷雾火焰的非单调性行为,因为该液滴的蒸气量被分配到流中。结果,喷雾火焰的总体特性不仅取决于Z和标量耗散率,还取决于喷雾源项S_V。我们提出了一个新的通用坐标变量,该变量考虑了由于气体相和液滴蒸发而引起的有关整个混合分数的空间信息。此坐标变量Z_C(X_I)基于气态混合物分数Z(X_I)的累积值,并显示为单调。对于纯气体流量,新的累积函数Z_C在Z空间中产生了良好的火焰结构。在当前的手稿中,根据Z_C的范围和质量分数的喷雾薄片结构以及新的质量分数方程式被得出,然后应用于具有电势流的规范逆流配置。对于乙醇和甲醇喷雾剂,获得了数值结果,并分析了刘易斯和斯托克斯数量对喷雾膜结构的影响。当将结构映射回物理空间时,提出的配方很好地一致,从而确认了我们的整合方法。

The external structure of the spray-flamelet can be described using the Schvab-Zel'dovich-Liñan formulation. The gaseous mixture-fraction variable as function of the physical space, Z(x_i), typically employed for the description of gaseous diffusion flames leads to non-monotonicity behaviour for spray flames due to the extra fuel supplied by vaporisation of droplets distributed into the flow. As a result, the overall properties of spray flames depend not only on Z and the scalar dissipation rate, but also on the spray source term, S_v. We propose a new general coordinate variable which takes into account the spatial information about the entire mixture fraction due to the gaseous phase and droplet vaporisation. This coordinate variable, Z_C(x_i) is based on the cumulative value of the gaseous mixture fraction Z(x_i), and is shown to be monotonic. For pure gaseous flow, the new cumulative function, Z_C, yields the well-established flamelet structure in Z-space. In the present manuscript, the spray-flamelet structure and the new equations for temperature and mass fractions in terms of Z_C are derived and then applied to the canonical counterflow configuration with potential flow. Numerical results are obtained for ethanol and methanol sprays, and the effect of Lewis and Stokes numbers on the spray-flamelet structure are analyzed. The proposed formulation agrees well when mapping the structure back to physical space thereby confirming our integration methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源