论文标题

Lipschitz在存在非本地术语的情况下解决方案对漂移扩散方程的连续性

Lipschitz continuity of solutions to drift-diffusion equations in the presence of nonlocal terms

论文作者

Ibdah, Hussain

论文摘要

我们分析了Lipschitz连续性的传播对各种线性和非线性漂移扩散系统的繁殖,并且具有不可压缩性约束。假定扩散是分数的或经典的。这样的方程式建模了不可压缩的Navier-Stokes系统,广义的粘性汉堡 - 希尔伯特方程和各种主动标量。我们得出的条件可以保证不可压缩的NSE以非本地,一维粘性汉堡型不平等的形式传播Lipschitz的规律性。我们表明,对于任何空间维度,都可以满足类似的不平等现象,这会导致全球规律性。我们还获得了Navier-Stokes方程的规律性标准,其分数耗散$(-δ)^α$,无论laplacian $α\ in(0,1] $的功能如何,就hölder-type而言,在解决方案上的假设方面是至关重要的。 $α\在[1/2,1] $中,但是当$α\ in(0,1/2)$中时,我们证明在超批评性假设下会产生部分规律性,如果我们考虑到$ 1/2,1/a的$ 1/2,$ himer-ny nise nise the Iss a n him a n hir-nimer-nis A a hir-n is a himer-考虑到没有不可压缩的限制的漂移扩散方程(据我们所知,这取决于我们所知,我们的结果要么改善,推广,或提供不同的证据,以使我们对此类模型的先前已知的规律性结果进行了不同。

We analyze the propagation of Lipschitz continuity of solutions to various linear and nonlinear drift-diffusion systems, with and without incompressibility constraints. Diffusion is assumed to be either fractional or classical. Such equations model the incompressible Navier-Stokes systems, generalized viscous Burgers-Hilbert equation and various active scalars. We derive conditions that guarantee the propagation of Lipschitz regularity by the incompressible NSE in the form of a non-local, one dimensional viscous Burgers-type inequality. We show the analogous inequality is always satisfied for the generalized viscous Burgers-Hilbert equation, in any spatial dimension, leading to global regularity. We also obtain a regularity criterion for the Navier-Stokes equation with fractional dissipation $(-Δ)^α$, regardless of the power of the Laplacian $α\in(0,1]$, in terms of Hölder-type assumptions on the solution. Such a criterion appears to be the first of its kind when $α\in(0,1)$. The assumptions are critical when $α\in[1/2,1]$, but sub-critical when $α\in(0,1/2)$. Furthermore, we prove a partial regularity result under supercritical assumptions, which is upgraded to a regularity criterion if we consider the pressure-less drift-diffusion problem when $α\in(1/2,1]$. That is, a certain Hölder super-criticality barrier is broken when considering a drift-diffusion equation without incompressibility constraints (no pressure term), which to our knowledge was never done before. Depending on the scenario, our results either improve on, generalize or provide different proofs to previously known regularity results for such models. The technique we use builds upon the evolution of moduli of continuity as introduced by Kiselev, Nazarov, Volberg and Shterenberg.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源