论文标题
有限差神经网络:部分微分方程的快速预测
Finite Difference Neural Networks: Fast Prediction of Partial Differential Equations
论文作者
论文摘要
在许多科学和工程学科中,发现复杂系统的潜在行为是一个重要的话题。在本文中,我们提出了一个新型的神经网络框架,有限的差异神经网络(FDNET),以从数据中学习偏微分方程。具体而言,我们提出的有限差异网络旨在从轨迹数据中学习基础管理部分微分方程,并仅使用几个可训练的参数来迭代地估算未来的动态行为。我们说明了在热方程式上的框架的性能(预测能力),具有和/或没有噪声和/或强迫,并将我们的结果与前向Euler方法进行比较。此外,我们展示了使用无Hessian的信任区域方法来训练网络的优势。
Discovering the underlying behavior of complex systems is an important topic in many science and engineering disciplines. In this paper, we propose a novel neural network framework, finite difference neural networks (FDNet), to learn partial differential equations from data. Specifically, our proposed finite difference inspired network is designed to learn the underlying governing partial differential equations from trajectory data, and to iteratively estimate the future dynamical behavior using only a few trainable parameters. We illustrate the performance (predictive power) of our framework on the heat equation, with and without noise and/or forcing, and compare our results to the Forward Euler method. Moreover, we show the advantages of using a Hessian-Free Trust Region method to train the network.