论文标题
具有磁共振的选择性微结构尺寸的非侵入性定量成像
Non-invasive quantitative imaging of selective microstructure-sizes with magnetic resonance
论文作者
论文摘要
通过非侵入性成像提取生物组织的可靠和定量微观结构信息是了解疾病机制并允许病理学的早期诊断的重要挑战。磁共振成像是追求这一目标的最喜欢的技术,但仍然提供了比相关的体内研究细节要大得多的分辨率。监测组织中的分子扩散是克服分辨率限制的有前途的机制。但是,获得详细的微观结构信息需要获取数十张图像,这些图像构成了长时间的测量时间,并且对于体内研究而言是不切实际的。作为解决这个杰出问题的一步,我们在这里报告了一种仅需要两次测量值及其原则实验的方法,即通过适当的动态控制磁场梯度对核自旋产生选择性微观结构大小的图像。我们使用旋转回波序列设计微观结构大小的过滤器,这些序列利用磁力化的“衰减转移”,而不是常用的衰减率。这种方法的结果是可以使用当前技术执行的定量图像,并基于定义生物组织组成的微观结构参数来阐明大量诊断信息。
Extracting reliable and quantitative microstructure information of living tissue by non-invasive imaging is an outstanding challenge for understanding disease mechanisms and allowing early stage diagnosis of pathologies. Magnetic Resonance Imaging is the favorite technique to pursue this goal, but still provides resolution of sizes much larger than the relevant microstructure details on in-vivo studies. Monitoring molecular diffusion within tissues, is a promising mechanism to overcome the resolution limits. However, obtaining detailed microstructure information requires the acquisition of tens of images imposing long measurement times and results to be impractical for in-vivo studies. As a step towards solving this outstanding problem, we here report on a method that only requires two measurements and its proof-of-principle experiments to produce images of selective microstructure sizes by suitable dynamical control of nuclear spins with magnetic field gradients. We design microstructure-size filters with spin-echo sequences that exploit magnetization "decay-shifts" rather than the commonly used decay-rates. The outcomes of this approach are quantitative images that can be performed with current technologies, and advance towards unravelling a wealth of diagnostic information based on microstructure parameters that define the composition of biological tissues.