论文标题

溶液中密闭表面之间接触形成的微观建模

Microscopic modeling of contact formation between confined surfaces in solution

论文作者

Høgberget, Jørgen, Røyne, Anja, Dysthe, Dag K., Jettestuen, Espen

论文摘要

我们得出了一个动力学的​​蒙特卡洛模型,用于研究理想溶液中约有表面之​​间如何形成触点。该模型结合了周期性(2+1) - 维固体固体(SOS)晶体表面和狭窄平坦表面之间的排斥和吸引人的表面表面力。排斥性相互作用源自电力双层理论,有吸引力的相互作用是SOS表面和狭窄表面上粒子之间的范德华相互作用。限制是由恒定的外部压力正常与表面表面力保持机械平衡的表面。该系统处于热平衡状态,颗粒可以沉积并溶解在SOS表面。化学平衡中表面之间形成的稳定接触的大小显示出对外部压力的非平凡依赖性,这在现象学上与振荡性水合力对表面表面分离的依赖性相似。作为触点形式,我们发现经典现象,例如Ostwald成熟,合并以及原始成核阶段。我们发现触点形状为岛屿,带或凹坑,这仅取决于相对于系统尺寸的接触尺寸。我们还发现该模型从化学平衡中表现出色。该模型与理解结晶和压力溶液的力是关键机制的过程有关。

We derive a Kinetic Monte Carlo model for studying how contacts form between confined surfaces in an ideal solution. The model incorporates repulsive and attractive surface-surface forces between a periodic (2+1)-dimensional solid-on-solid (SOS) crystal surface and a confining flat surface. The repulsive interaction is derived from the theory of electric double-layers, and the attractive interactions are Van der Waals interactions between particles on the SOS surface and the confining surface. The confinement is induced by a constant external pressure normal to the surfaces which is in mechanical equilibrium with the surface-surface forces. The system is in thermal equilibrium, and particles can deposit to and dissolve from the SOS surface. The size of stable contacts formed between the surfaces in chemical equilibrium show a non-trivial dependency on the external pressure which is phenomenologically similar to the dependency of oscillatory hydration forces on the surface-surface separation. As contacts form we find classical phenomena such as Ostwald ripening, coalescence, and primary and secondary nucleation stages. We find contacts shaped as islands, bands or pits, depending solely on the contact size relative to the system size. We also find the model to behave well out of chemical equilibrium. The model is relevant for understanding processes where the force of crystallization and pressure solution are key mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源