论文标题
湍流中的两点应力应变速率相关结构和非本地涡流粘度
Two-point stress-strain rate correlation structure and non-local eddy viscosity in turbulent flows
论文作者
论文摘要
通过分析湍流中过滤的速度场的Karman-Howarth方程,我们表明过滤的应变率和子滤光器应力张量之间的两点相关在过滤效率相关功能的演变中起着核心作用。因此,基于两点相关的{\ it统计先验测试}因此,对湍流模型进行了严格且物理上有意义的研究。使用来自各向同性和通道流湍流的直接数值模拟的数据,我们表明局部涡流模型无法在实际子滤波器应力 - 应变速率相关函数中显示出长的尾巴。可以通过定义基于$ 0 <α<1 $的分数梯度而不是对应于$α= 1 $的经典梯度来实现更强的非本地相关性。对分数梯度运算符的各种阶则提供了此类相关函数的分析。已经发现,在各向同性湍流中,分数衍生物顺序$α\ sim 0.5 $可获得最佳结果,而对于通道流量$α\ sim 0.2 $ 0.2 $在流向方向上的相关性得出更好的结果,甚至可以进入核心通道区域。在跨度方向上,通道流量结果显示出更多的局部相互作用。总体结果证实了亚滤光器应力与分辨率流体变形率之间的相互作用中的强烈非本地性,但是非异端流的非平常方向依赖性。
By analyzing the Karman-Howarth equation for filtered velocity fields in turbulent flows, we show that the two-point correlation between filtered strain-rate and subfilter stress tensors plays a central role in the evolution of filtered-velocity correlation functions. Two-point correlations-based {\it statistical priori tests} thus enable rigorous and physically meaningful studies of turbulence models. Using data from direct numerical simulations of isotropic and channel flow turbulence we show that local eddy viscosity models fail to exhibit the long tails observed in the real subfilter stress-strain rate correlation functions. Stronger non-local correlations may be achieved by defining the eddy-viscosity model based on fractional gradients of order $0<α<1$ rather than the classical gradient corresponding to $α=1$. Analyses of such correlation functions are presented for various orders of the fractional gradient operators. It is found that in isotropic turbulence fractional derivative order $α\sim 0.5$ yields best results, while for channel flow $α\sim 0.2$ yields better results for the correlations in the streamwise direction, even well into the core channel region. In the spanwise direction, channel flow results show significantly more local interactions. The overall results confirm strong non-locality in the interactions between subfilter stresses and resolved-scale fluid deformation rates, but with non-trivial directional dependencies in non-isotropic flows.