论文标题
位置依赖性质量振荡器的线性和非线性光学吸收
Linear and nonlinear optical absorption of position-dependent mass oscillators
论文作者
论文摘要
我们研究线性$(α^{(1)})$,非线性$(α^{(3)})$和总$(α)$(α)$的位置依赖性质量振荡器(PDMOS)的光吸收。我们考虑用于描述半导体结构的三个质量分布$(m(x,λ))$; $λ$是变形参数。在限制$λ\ rightarrow 0 $中,这三个系统描述了抛物线量子的电子。对于系统,$ m_1(x)= m_0/[1+(λx)^2]^2 $我们观察到,随着$λ$的增加,$α^{(1)}(ω)(ω)(ω)(ω)(ω))(α^{(3)}(ω))$增加(减小)。对于$ m_2(x)= m_0 [1+(λx)^2] $和$ m_3(x)= m_0 [1 + tanh^2(λx)] $相反。鉴于PDMO方法,我们观察到$ m_2(x)$和$ m_3(x)$系统非常相似,并且无法通过两个最低电子级别之间的光学过渡来区分。我们还讨论了系统的总光吸收。
We study the linear $(α^{(1)} )$, nonlinear $(α^{(3)})$ and total $(α)$ optical absorptions of position-dependent mass oscillators (PDMOs). We consider three mass distributions $(m(x,λ))$ used to describe semiconducting structures; $λ$ is a deformation parameter. In the limit $λ\rightarrow 0$, the three systems describe electrons in a parabolic quantum well. For the system $m_1(x)=m_0/[1+(λx)^2 ]^2$ we observe that $α^{(1)}(ω)) (α^{(3)}(ω))$ increases (decreases) with increasing $λ$. For $m_2 (x)=m_0 [1+(λx)^2 ]$ and $m_3(x)=m_0 [1 + tanh^2 (λx) ]$ the opposite occurs. In the light of the PDMO approach we observe the $m_2 (x)$ and $m_3(x)$ systems are very similar, and can not be distinguished by optical transitions between the two lowest electronic levels. We also discussed about the total optical absorption of the systems.