论文标题

Rho Meson和Quark子结构对核自旋轨道电势的贡献

Contribution of the rho meson and quark sub-structure to the nuclear spin-orbit potential

论文作者

Chanfray, Guy, Margueron, Jérôme

论文摘要

探索并讨论了自旋轨道(SO)潜力的微观起源(SO)潜力,并讨论用于应用于核和超核。因此,我们开发了一种手性相对论方法,其中与标量和向量 - 梅森场的耦合受夸克子结构控制。这种方法表明,Isoscalar和Isoscal的密度依赖于SO电位,可用于测试相对论框架中实现的显微成分:核子在基础状态中的夸克子结构,并与富裕的中心部门耦合,其中$ρ$ Meson起着$ρ$ Meson的作用。这也与矢量优势模型(VDM)现象学和核子的已知磁性特性一致。我们探讨了基于Hartree和Hartree-fock平均场的预测,以及$ρ$ - 努克龙耦合的各种场景,被排名为弱,中和强,这会影响SO潜力的等isscalar和ISOVETOR密度依赖性。我们表明,在$ n = z $ nuclei及其ISOVECTOR依赖性中,介质至强$ρ$耦合对于再现Skyrme现象学至关重要。假设SU(6)价夸克模型,我们的方法将扩展到超声,并提供了对超核中$Nλ$旋转轨道潜力的淬灭的微观理解。它也适用于其他超代,例如$σ$,$ξ$和$ω$。

The microscopic origin of the spin-orbit (SO) potential in terms of sub-baryonic degrees of freedom is explored and discussed for application to nuclei and hyper-nuclei. We thus develop a chiral relativistic approach where the coupling to the scalar- and vector-meson fields are controlled by the quark substructure. This approach suggests that the isoscalar and isovector density dependence of the SO potential can be used to test the microscopic ingredients which are implemented in the relativistic framework: the quark substructure of the nucleon in its ground-state and its coupling to the rich meson sector where the $ρ$ meson plays a crucial role. This is also in line with the Vector Dominance Model (VDM) phenomenology and the known magnetic properties of the nucleons. We explore predictions based on Hartree and Hartree-Fock mean field, as well as various scenarios for the $ρ$-nucleon coupling, ranked as weak, medium and strong, which impacts the isoscalar and isovector density dependence of the SO potential. We show that a medium to strong $ρ$ coupling is essential to reproduce Skyrme phenomenology in $N=Z$ nuclei as well as its isovector dependence. Assuming an SU(6) valence quark model our approach is extended to hyperons and furnishes a microscopic understanding of the quenching of the $NΛ$ spin-orbit potential in hyper-nuclei. It is also applied to other hyperons, such as $Σ$, $Ξ$ and $Ω$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源