论文标题
关于Liechti-Strenner的示例的备注,具有较小的扩张
Remarks on the Liechti-Strenner's examples having small dilatations
论文作者
论文摘要
我们表明,Liechti-Strenner在\ cite {liechtistrenner18}中封闭的不可导向表面的示例最大程度地减少了伪anosov同构同构的膨胀,并具有可使不变的叶子的定向叶子,并且除了第一个典型的综合型均具有不可变形的范围,而不是第一个典型的综合性。我们还表明,Liechti-Strenner在\ cite {liechtistrennernernner18}中对封闭式表面的定向反向同构的例子最小化了伪 - anosov同型同构中的膨胀,但使用了方向的不变性fol和poteff of the the protife the protial the poteff of the protial the protial the protial poptial poptial unnom $( $ p(x)(x)(x \ pm 1)^2 $,$ p(x)(x^2 \ pm 1)$或$ p(x)(x^2 \ pm x + 1)$非阳性的$ p(x)(x)(x)(x)(x)^2 $,$ p(x)^2 $,$ p(x)(x)^2 $,$ p(x)(x)(x^2 \ pm 1)$以外的所有系数。
We show that the Liechti-Strenner's example for the closed nonorientable surface in \cite{LiechtiStrenner18} minimizes the dilatation within the class of pseudo-Anosov homeomorphisms with an orientable invariant foliation and all but the first coefficient of the characteristic polynomial of the action induced on the first cohomology nonpositive. We also show that the Liechti-Strenner's example of orientation-reversing homeomorphism for the closed orientable surface in \cite{LiechtiStrenner18} minimizes the dilatation within the class of pseudo-Anosov homeomorphisms with an orientable invariant foliation and all but the first coefficient of the characteristic polynomial $p(x)$ of the action induced on the first cohomology nonpositive or all but the first coefficient of $p(x) (x \pm 1)^2$, $p(x) (x^2 \pm 1)$, or $p(x) (x^2 \pm x + 1)$ nonpositive.