论文标题

$ \ mathbb {n} $的Coabelian理想 - 分级为谎言代数和申请正确的倾斜artin lie代数

Coabelian ideals in $\mathbb{N}$-graded Lie algebras and applications to right angled Artin Lie algebras

论文作者

Kochloukova, Dessislava H., Martínez-Pérez, Conchita

论文摘要

我们考虑了某些$ \ mathbb {n} $的同源有限属性$ fp_n $ - 分级为lie代数。在证明了一些一般结果之后,请参见定理A,推论B和推论C,我们专注于一个可以被视为与图$γ$相关的广义BESTVINA-BRADY群体的Lie代数版本的家庭。我们证明,这些谎言代数的同源有限属性可以与图形相同的方式确定。在最后一个版本中,我们纠正了一些错义,尤其是定理D的说明(从$ n-1 $ -1AcyClicity到$ n-1 - | w | $ -asyclicity)。

We consider homological finiteness properties $FP_n$ of certain $\mathbb{N}$-graded Lie algebras. After proving some general results, see Theorem A, Corollary B and Corollary C, we concentrate on a family that can be considered as the Lie algebra version of the generalized Bestvina-Brady groups associated to a graph $Γ$. We prove that the homological finiteness properties of these Lie algebras can be determined in terms of the graph in the same way as in the group case. In the last version we have corrected some missprints, in particular the statement of Theorem D (from $n-1$-acyclicity to $n-1 - |w|$-acyclicity).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源